当前位置:首页 > 奇亿百科 > 正文

飞机测距离的导航系统有哪些

摘要: 全球定位导航系统(GPS)在航空物探中的应用 董继国(地质矿产部航空物探遥感中心,北京 100083)全球定位系统(GPS)是美...

全球定位导航系统(GPS)在航空物探中的应用

董继国

(地质矿产部航空物探遥感中心,北京 100083)

全球定位系统(GPS)是美国历时20余年开发成功的一种无线电导航系统。它将被用来逐步取代目前使用的其它无线电导航系统,并使全球导航真正得以实现。GPS系统现已正式投入使用,可向全球用户提供高精度的三维位置、速度和时间信息,被誉为20世纪的重大技术突破之一。GPS技术推广应用,使航空物探测量获益匪浅。1987年地矿部航遥中心引进GPS接收机,GPS导航定位系统的应用不仅简化了航空物探测量设备,提高了导航定位精度和测量总精度,扩展了航空物探调查领域,也极大地提高了航空物探测量生产效率,已成为航空物探之首选导航定位手段。

一、不同导航定位方法比较

导航定位在航空物探测量中的重要性是众所周知的。航空物探测量开始是以地形图目视导航,逐步发展到地形图目视-照相、仪器导航定位,如双曲线、多普勒(辅以照相或录像)、应答导航定位系统等,有力地促进了航空物探事业的发展。地形图目视、照相及录像定位精度取决于地形图和领航、判图的精度。无线电导航定位系统主要使用电磁波频谱中的中频、低频和甚低频带,频率低、作用距离远而精度低,频率高、作用距离近而精度高。该系统与GPS相比,受地形和控制区域限制,设备庞大笨重,需要人员较多,无线电信号接收、发射受环境影响较大,仪器故障较多,导航定位精度一般不高。表1列出了不同导航定位方法定位精度对比。它说明,随着导航定位技术进步,定位精度在不断提高。

表1 不同导航定位方法定位精度对比

二、全球卫星定位系统

全球定位系统(Global Positioning System,简称GPS),是美国对海上、陆地和空中设施进行高精度导航定位要求而建立的。GPS作为新一代卫星导航定位系统,不仅具有全球性、全天候、连续的精密三维导航定位能力,而且具有良好的抗干扰性和保密性。全球卫星导航定位系统的迅速发展,引起了各国普遍关注。特别是近十年来,GPS技术在应用基础的研究、新的应用领域的开拓、软件和硬件的开发方面都取得了迅速发展。

原苏联也有类似的系统,称为全球导航卫星系统(Global Navigation Satellite System,简称GLONASS),现由俄罗斯接管。GLONASS与GPS的一个主要区别是GLONASS采用频分多址技术区分卫星信号,而GPS则采用码分多址技术。GLONASS不存在SA(Selective Availability——选择可用性)干扰,能为民用用户提供精确的定位。GPS有SA干扰,向民用用户提供100m的精度。目前,已有双星座单频接收机,可充分利用上述的空间技术,提高单频C/A码接收机的导航定位精度,组合星座的定位精度可达16m左右。

三、GPS在航空物探测量中的应用

GPS系统向民用用户只提供标准定位服务(SPS),利用粗码(C/A码)定位,精度可达14m。由于美国采取了SA政策,降低民用GPS的定位精度,规定水平定位精度为100m,垂直测量精度为157m。

在航空物探勘查中,GPS导航定位系统显著提高了航迹定位精度、改善了测线疏密度和测量总精度。与其它导航定位系统相比,精简了设备和人员,提高了生产效率。利用这些技术,航遥中心第一次完成了塔里木盆地东部地区高精度航磁勘查。表2列举了在SA干扰下野外工区实测GPS静态数据,对于1:5万及其它中小比例尺航空物探调查,该精度可以满足航磁规范要求。

表2 野外工区TANS-11型GPS静态观测数据

四、事后差分GPS在航空物探中的应用

事后差分GPS系统的定位精度可以满足任何比例尺航空物探测量的定位要求,且经济易行,但不能保证其实时导航精度。

在山东枣庄工区进行的以寻找金伯利岩岩管为目的的航磁测量,局部地区要加密至线距为100m的大比例尺飞行。经过对测区的地形和差分GPS调研情况综合分析,由于无法建立地面数据通讯链,不能采用实时差分GPS方法,所以,决定采用事后差分GPS,其定位精度可以满足大比例尺勘查要求,保证大比例尺的测网疏密度;而且,事后差分设备简单,安置方便,与实时差分相比,生产成本较低。1995年7月至11月,利用事后差分GPS方法为磁测作业动力滑翔机导航定位,共飞行32架次,完成17000测线公里。航磁测量总精度在1:2.5万测区为±1.75nT,1:1万测区为±1.49nT。投入生产之前,对事后差分GPS做了近距、远距静态测试,验证其定位精度和控制范围(表3和表4),并在生产期间进行了差分GPS与单GPS的静态对比试验(表5)和简单的差分GPS与单GPS动态测试(图1)。受技术条件限制,测试方法比较简单。飞机在机场上空沿水泥跑道边做航高为30m的超低空直线往返飞行,在飞行中测试人员观察飞机的偏航。试验表明,与单GPS比较,差分后的航迹与实际飞行相符,收敛较好,定位精度有明显改善,飞机保持在指定航向上飞行,左右偏差不超过5m。

表3 近距离已知点上差分GPS测试

表4 远距离(115.8km)已知点上差分GPS测试

表5 单GPS与差分GPS静态对比测试

图1 差分GPS与单GPS动态飞行试验航迹对比

五、双星座GPS在航空物探中的应用

GLONASS星座在三个轨道面上布置24颗卫星,已投入运行。同时,新型的双星座接收机(GPS+GLONASS)亦已投入使用。“中心”组织有关技术人员对新产品做了详细的调研、分析和测试,认为双星座GPS+GLONASS接收机可以满足大比例尺航空物探测量导航定位的要求,而无须差分。在选购前,我们对3S公司GNSS300型和阿斯泰克公司GG24型组合接收机进行了性能和技术指标对比试验,包括长时间静态测试、车载动态测试和飞机上的电磁干扰测试(图2、图3和图4)。经测试数据分析和观察,决定选用阿斯泰克公司的GG24型组合接收机,并首次用于大比例尺航空物探勘查,顺利地实现了测线间距为150m的高精度航磁勘查。磁测总精度为1.84nT,测网疏密度为150m±18.2m,导航定位精度达到设计要求,取得了高质量的基础资料,受到了业主的高度评价,认为达到世界一流水平。

图2 GG24单GPS卫星静态数据离散分布

图3 GG24单GLONASS卫星静态数据离散分布

图4 GG24组合卫星静态数据离散分布

六、结论和建议

全球卫星导航定位系统GPS在航空物探勘查中已使用十余年了,在不同地区、不同线距和不同任务的测量中,均取得了显著效果。

1.GPS技术的应用和普及,提高了航空物探技术在沙漠、海洋等地区开展调查的能力,加快了国土调查的进程。

2.双星座GPS接收机的引入使用,弥补了单GPS导航精度较低、无法用于大比例尺飞行作业的不足,达到了线距为100m的航空物探勘查导航定位要求,从而实现了真正的大比例尺高精度航空物探勘查,并为替代地面工作准备了技术条件。

3.航空物探调查中GPS的应用,应视具体要求而定。总结多年来的经验,提出如下建议供参考。对于500m以上线距的测量,使用单台GPS(TANS-Ⅱ型);100~250m线距测量,使用双星座导航定位系统(GG-24型),它提供的水平精度优于20m,高度精度可达30m。在今后的航空物探勘查中,尽量使用双星座导航定位系统,可以减少由于定位产生的误差,便于以后在同一区域再做工作时,可在已飞的线距中加密测量,降低飞行成本。要求高精度的定位测量时,可以采用事后差分。对要求高精度导航定位测量时,可以采用差分信标台或同步通讯卫星实现实时导航定位,但费用较高。

全球导航定位技术,在我国航空物探领域的成功应用,凝聚了广大技术人员的智慧和心血。本文中GPS静态数据由李标芳教授提供,野外各工区的静态数据据有关报告,在此表示衷心感谢!

THE APPLICATION OF GLOBAL POSITIONING SYSTEM TO THE AEROGEOPHYSICAL SURVEY

Dong Jiguo

(Aerogeophysical Survey and Remote-Sensing Center,Beijing 100083)

Abstract

Since the introduction of the satellite navigation global positioning system(GPS),single GPS,post difference GPS and double constellation combined GPS techniques have been successively employed, whose application and dissemination have raised the accuracy of navigation positioning and the general precision of the survey,helped the overall improvement of the aerogeophysical technique,extended the field of the aerogeophysical investigation, and considerably raised the efficiency of aerogeophysical survey.

什么是塔康导航?

塔康导航指在二十世纪中期,为了实现精确空中定位导航,由美国费得拉尔电信试验室根据美空军、海军的建议,研制了塔康系统。

塔康的原名为TACAN,是Tactical Air Navigation System-战术空中导航系统的缩写。

它是一种近程极坐标式无线电导航系统。

扩展资料:

塔康工作区域

跟DME 一样,由于是工作在UHF 频段,所以塔康最大作用距离取决于视线范围,所以作用距离随着高度变化。

因为塔康具有测向功能,除了受视线限制外,还存在顶空盲区(Cone of Silence)和测向盲。

测向盲区正对地面台天线上空呈圆锥形,夹角约120º,在该区域飞行只能测距,不能测向,这是因为地面天线的调制度太浅。

测距容限主要取决于机载和地面台站设备两者的灵敏度、发射功率和电波传输损耗。

参考资料来源:百度百科-塔康导航系统

民航飞机靠什么导航

可以分为三类:1.无线电导航,依靠地面安装的无线电导航台发射的信号,机载设备接收后,处理得到飞机位置,有伏尔,塔康,测距机,信标台,以及用于着陆引导的仪表着陆ILS和微波着陆MLS。2.惯性导航,这个是自主推算导航,机载惯导设备感受飞机三轴加速度,经积分计算得到速度,二次积分得到位移,在知道初始位置的情况下,就能推算飞机的实时位置了。3.卫星导航,这个跟手机一样的原理。

关于客机上的导航系统!

导航使用的是VOR/(DME)和NDB/(DME)信号发射台,当然仅仅靠VOR和NDB没法满足空域要求,所以就会利用台自带的DME测距系统,以及VOR的定向性来确定出其他的导航点,这些点本身不存在,只是通过VOR的相对位置来确定方位的。

另外飞机上使用的是惯性导航系统,其实我也不太明白为什么要叫“惯性导航”,总之这套设备就是利用惯性来确定飞机的位置的。确定了飞机的位置,一切导航就好办了。飞机随时使用惯性基准来确定自己的位置,再根据VOR和NDB提供的方位,就能确定出一条航路并沿着航路精准地飞行。

理论上不能靠随便设定一个方位点来向那里飞行,但随着GPS系统的发展,目前轻型通用飞机已经在尝试使用GPS来飞到任何一个地方,但民航客机由于GPS技术还不完善,目前并没有使用GPS导航(是没有,不是没有大量),但现有的导航设备已经可以满足飞机的精确飞行需求。

另外你说有很多导航系统,其实常用的只有一套惯性导航系统,这是所有导航方式(是方式)的基础,而至于RNAV、IFR、VFR、ILS什么的,都是在其基础上延伸出的导航方式,原理依然是这套惯性导航系统(INS)

飞机导航系统的导航方法

1、目视定位

目视定位是由驾驶员观察地面标志来判定飞机位置;航位推算是根据已知的前一时刻的位置和测得的导航参数来推算当前飞机的位置;几何定位是以某些位置完全确定的导航点为基准,测量出飞机相对于这些导航点的几何关系,最后定出飞机的绝对位置。

2、几何定位

以某导航点为基准确定飞机相对于导航点的位置,从而定出飞机的位置线(即某些几何参数如距离、角度保持不变的航迹)。再确定飞机相对于另一导航点的位置,定出另一条位置线。两条位置线的交点就是飞机所在的位置。

3、飞机导航系统

根据已知的前一时刻飞机位置和测得的导航参数推算当时飞机的位置。例如根据测出的真实空速和飞机的航向,在给定风速和风向条件下利用航行速度三角形计算出地速(见飞行速度、仪表导航),再把地速对时间进行积分,代入起始条件──前一时刻的位置,即可得到当时的飞机位置。

扩展资料:

导航系统的分类:

1、仪表导航系统:利用飞机上简单仪表所提供的数据通过人工计算得出各种导航参数。这些仪表是空速表、磁罗盘、航向陀螺仪和高度表等。后来由人工计算发展为自动计算而有了自动领航仪。各种简单仪表也逐渐发展成为航向姿态系统和大气数据计算机等。

2、无线电导航系统:利用地面无线电导航台和飞机上的无线电导航设备对飞机进行定位和引导。

3、惯性导航系统:利用安装在惯性平台上的,3个加速度计测出飞机沿互相垂直的3个方向上的加速度,由计算机将加速度信号对时间进行一次和二次积分,得出飞机沿3个方向的速度和位移,从而能连续地给出飞机的空间位置。

4、组合导航系统:由以上几种导航系统组合起来所构成的性能更为完善的导航系统。

参考资料来源:百度百科-飞机导航系统

百度百科-组合导航系统

发表评论